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Abstract

FMCW-radars can be used as sensors in the short range,
in order to locate and determine reflections of targets by
amplitude and phase. Such sensors have to be accurate,
fast and inexpensive. The paper describes, how these
goals can be reached by applying a single channel system
and establishing complex measurement capability. This
is done by using the Hilbert transform and by removing
the time domain system error using techniques similar
to those applied for vector network analyzers. Details
of the system implementation are given and results are
compared to network analyzer measurements.

1 Introduction

FMCW-radars can be employed in the short range for sensor
applications. Using this type of radar as a sensor it is often
necessary to determine phase � and amplitude r of unknown
short range reflections of a device under test (D.U.T.) very
fast. For industrial applications the system also must have a
simple design to ensure low manufacturing costs. Conven-
tional FMCW-radars do not show these features inherently.

A typical setup for a short range FMCW-radar is sket-
ched in fig. 1. In the literature this type of radar is often
called a reflectometer and the description is well known
(e. g. [Som72]). The system can be seen as a homodyne
network analyzer. The output signal of this analyzer is com-
plex and sampling of two signals is necessary. Due to the
different path length of the reference and the measurement
path the swept frequency generates low frequency output
signals. If the radar is calibrated, it is possible to obtain
the complex reflection coefficients ri as a function of their
locations. The locations are coded in the low frequency
components fi of the output signal y(t)

y(t) =
MX
i=1

jrij � e
j(2� � fi � t+ �i) (1)

with fi =
B

TS
� (ti � tr) .
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Fig. 1: FMCW-radar for short range applications

The FMCW-radar used in this work has a bandwidth B of
4:4GHz in the X-band and a sweep timeTS of 16ms. Using
this system two main problems occur. First, the receiving
mixer is normally a quadrature receiver which can cause
problems especially when applied over a broad bandwidth.
The second problem is to calibrate the reflectometer with
known standards in order to remove the system error.

The quadrature receiver error can be removed in theory
[Neu88] but this is a complicated task. As a better solution
the Hilbert transform is applied to calculate the complex
data y(t) from the real output signal of only one sampled
mixer output. This simplifies the system and makes it fast
and cheap. The calibration of the system error is performed
with techniques known from network analyzer techniques.

2 Hilbert transform theory

The signal y(t) is separated into a real r(t) and an imaginary
part i(t) (for simplicity only one reflection with frequency
fi = fR = !r=2� is considered)

y(t) = r(t) + j � i(t) . (2)

In frequency domain the imaginary part I(j!) can be cal-
culated from the real part R(j!) by multiplication with the
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Hilbert transform operator HH(j!)

I(j!) = R̂(j!) = HH(j!) �R(j!) (3)

with HH(j!) = �j � sgn(!) (4)

Transforming this result back into time domain, the multipli-
cation in frequency domain is transformed into a convolution
(denoted by the symbol �),

i(t) = r̂(t) = r(t) � hh(t) . (5)

A problem in using the Hilbert transform is the error ∆i(t)
between the original and the calculated imaginary part

∆i(t) = i(t)� r̂(t) ; (6)

which must be minimized. This error occurs due to the
limited sampling time TS, which corresponds to a rectangu-
lar time window (rect(t)). Due to this window, the signal
has spectral components not only at the frequencies �!r,
but also at higher and lower frequencies (Fourier transform
rect(t) corresponds to si(j!) = sin(j!)=j!). This causes
problems in the Hilbert transform operator HH(j!), if the
components near zero frequency have significant amplitu-
des.

In this paper several methods are applied to minimize
this error, which improve the Hilbert transform and can be
implemented easily.

� By using a long delay line in the measurement path, the
spectral component !r can be increased and the error
decreased. Negative components of the si(! � !r)
spectrum are minimized by this approach.

� Due to the fact that the main deviations occur at the
edges of the used frequency band, an improvement can
be obtained by increasing the measurement bandwidth
slightly. Although the components of the radar system
may not work well in this larger frequency range, it is
possible to decrease the error. After transformation the
original bandwidth can be used for further calculations.

� A Kaiser-window prior to the Hilbert transform and
inverse filtering afterwards is applied [Lip88]. The
Kaiser-window is defined as

hW (t) =
I0

�
� �
q

1 � [ t�TS=2
TS=2 ]2

�

I0(�)
(7)

in the time region 0 � t � TS and hW (t) = 0 else-
where. Using a parameter of � = 15, optimal solutions
are obtained.

Combining the above steps, it is possible to improve the
accuracy significantly. An error still occurs at the band
edges but is extremely low as can be shown by system
simulations (fig. 2).
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Fig. 2: Error ∆i(t), combination of higher modulation fre-
quency, wider bandwidth and Kaiser-window with
� = 15

3 Calibration of system errors

Let us assume a D.U.T. is connected directly to the calibra-
tion plane. Following from eq. 1 the output signal in this
case must be

y(t) = jrj � ej � � . (8)

Several errors may interfere this signal. Normally the di-
rectivity of the circulator used to separate the reflected from
the transmitted wave is low. Therefore an error term in the
output signal occurs (index D due to directivity), which can
be described as

yD(t) = jrD j � e
j(2� � fD � t+ �D) . (9)

Different path lengths and attenuations (index ∆ due to dif-
ference) between the measurement and the reference path
result in

y∆(t) = jr∆j � e
j(2� � f∆ � t+ �∆) . (10)

Due to mismatch between the D.U.T. and the radar system
some of the backscattered signal is reflected back to the
D.U.T. (index R due to reflection)

yR(t) = jrRj � e
j � �R . (11)

This causes multiple reflections between the D.U.T. and
the measurement system. The measured signal (index M )
disturbed by the three errors described above may be written
as:

yM (t) = yD(t) + y∆(t) � y(t) �
�

1 + � � �

+y(t) � yR(t) + [y(t) � yR(t)]
2 + � � �

+[y(t) � yR(t)]
3 + � � �

�
(12)

yM (t) = yD(t) +
y∆(t) � y(t)

1 � y(t) � yR(t)
(13)

for jy(t) � yR(t)j < 1

y(t) is derived from the measured signal yM (t). Eq. 13
when rearranged becomes:

y(t) =
yM (t)� yD(t)

y∆(t)� yR(t) �
�
yM (t)� yD(t)

� (14)
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If the error terms are known it is possible to solve this equa-
tion. A basic idea of this paper is to compare this description
of a time dependent signal with the known error model for
vector network analyzer calibration (e. g. [Bry93]).

A vector network analyzer is calibrated by using an error-
term flowgraph for the frequency signal (fig. 3). The reflec-
tion r, which is a function of frequency, can be calculated
using the well known formula

r =
rM �R11

R21R12 �R22(rM �R11)
; (15)

using the measurement of three known standards (open,
short and matched load).

error twoport  R

R11 R22

R21

R12

r

a 2

b
2
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b1

r    = b   / aM 1 1

Fig. 3: Error-term flowgraph for one port vector network
analyzers; a and b are incident and reflected waves

A comparison of eq. 15 and eq. 14 delivers the relation-
ships

yD(t) =̂ R11

y∆(t) =̂ R21 �R12

yR(t) =̂ R22 :

It must therefore be possible to calibrate the reflectometer
by employing the same three calibration standards used in
vector network analyzer calibration. It is merely required to
transform the description of the standards from a frequency
dependent into a time dependent one. This can be done
easily if one takes into account that the start frequency of
the used frequency band corresponds with the start time and
the stop frequency with the stop time. In our case a time
of t = 0 ms corresponds to the frequency f = 8GHz, and
a time of t = TS = 16 ms corresponds to the frequency
f = 12:4GHz. To ensure an accurate relationship, these
correspondences have to be calibrated. Employing wave-
guide resonators with resonant frequencies of fres = 8GHz
and fres = 12:4GHz, it is possible to calibrate the start and
stop frequencies.

4 Results

To show the accuracy of the system error calibration un-
der application of the Hilbert transform, measurements are
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Fig. 4: Waveguide resonator with resonant frequency of
fres = 8GHz, sampled signal Usa as a function
of time and frequency , detailed view

made on a third waveguide resonator (resonant frequency
fres = 10:2GHz) with a short range FMCW-radar and for
comparison with a vector network analyzer (index HP due
to the used HP 8510C). Both system are calibrated with the
same calibration standards1. Excellent results are obtained
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Fig. 5: Calibrated amplitude and phase S11 of a resonator
fres = 10:2GHz

for the phase and amplitude of the reflection coefficient S11

of this example (fig. 5). The error of the reflection coeffi-
cientS11 has a low amplitude ∆S11 = S11�S

HP
11 � �25 dB

and phase ∆Φ11 = Φ11�ΦHP
11 � �3� (fig. 6). It is possible

to show that these errors are due to imperfections of the fast
sweeping radar and not the calibration.

To ensure that the error is not due to the Hilbert transform,
we perform a second measurement with the HP 8510C.
Although this is a heterodyne analyzer, the two output si-

1manufacturer: Rosenberger Hochfrequenztechnik 3:5mm Calibration
Kit 50 Ω, Typ 03CK10A-150, Ser. No. H2501
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Fig. 6: Error of amplitude and phase S11 compa-
red to HP 8510C measurement, resonator at
fres = 10:2GHz

gnals have the same behaviour as the signals of a homo-
dyne system. We use this analyser because the accuracy
of the quadrature output signals is known and very high.
Again the waveguide resonator with the resonant frequency
fres = 10:2GHz is measured and analyzed in the normal
way by using the quadrature signals and alternatively by ap-
plying the Hilbert transform with only one sampled signal
(index H). Both versions are calibrated afterwards. The
error ∆SH11 = SH11 � S11 is shown in fig. 7. It is lower
than ∆jSH11 j = �40 dB over the whole frequency band.
The phase error, which is not shown here, is better than
∆ΦH

11 = ΦH
11 � Φ11 = �1�.
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Fig. 7: Error in amplitude between SH11 and normal ampli-
tude, resonator fres = 10:2GHz

The dynamic range of the FMCW-radar is demonstrated
by making measurements on various shorted attenuators.
This measurement setup simulates absorbing layers in free
space, which are terminated by short circuits. Five diffe-
rent attenuations from 0 dB up to 40 dB are measured with
the FMCW-radar and the vector network analyzer. Again
excellent agreement is obtained.
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Fig. 8: Shorted attenuators, attenuation from the top to the
bottom: 0 dB, 3 dB, 6 dB, 10 dB and 20 dB, S11

( ), HP 8510C SHP
11 ( )

5 Conclusions

This paper has presented an accurate method to calibrate
short range FMCW-radars using simple, well known cali-
bration schemes from vector network analyzer techniques.
The known calibration in the frequency domain can easily
be applied on the time dependent output signal of reflecto-
meters. It has been shown that the Hilbert transform offers
the possibility of speeding up and simplifying the system
using a one channel design to obtain vector network measu-
rements.
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